References

Please click on the titles below to view the relevant genetic testing scientific references.

Links marked PDF Read PDF do not require membership or registration.

 


FTO
Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R. B., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science (New York, NY), 316(5826), 889–894.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646098/pdf/nihms45574.pdf
Speakman, J. R., Rance, K. A., & Johnstone, A. M. (2008). Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring, Md), 16(8), 1961–1965.
PDF Read PDF: http://www.nature.com/oby/journal/v16/n8/pdf/oby2008318a.pdf
Haupt, A., Thamer, C., Staiger, H., Tschritter, O., Kirchhoff, K., Machicao, F., Häring, H.-U., et al. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diabetes, 117(4), 194–197.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19053021
Sonestedt, E., Roos, C., Gullberg, B., Ericson, U., Wirfält, E., & Orho-Melander, M. (2009). Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. The American journal of clinical nutrition, 90(5), –1425.
PDF Read PDF: http://www.ajcn.org/content/90/5/1418.full.pdf
Kilpeläinen, T. O., Qi, L., Brage, S., Sharp, S. J., Sonestedt, E., Demerath, E., Ahmad, T., et al. (2011). Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS medicine, 8(11), e1001116.
PDF Read PDF: http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001116

TAS2R38

Feeney, E., O’Brien, S., Scannell, A., Markey, A., & Gibney, E. R. (2011). Genetic variation in taste perception: does it have a role in healthy eating? The Proceedings of the Nutrition Society, 70(1), 135–143.
Link: http://www.ncbi.nlm.nih.gov/pubmed/21092367
Tepper, B. J. (2008). Nutritional implications of genetic taste variation: the role of PROP sensitivity and other taste phenotypes. Annual review of nutrition, 28, 367–388.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18407743
Drayna, D. (2005). Human taste genetics. Annual review of genomics and human genetics, 6, 217–235.
Link: http://www.ncbi.nlm.nih.gov/pubmed/16124860


Sachse, C., Brockmöller, J., Bauer, S., & Roots, I. (1999). Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. British Journal of Clinical Pharmacology, 47(4), 445–449.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014233/pdf/bcp0047-0445.pdf
Cornelis, M. C., El-Sohemy, A., Kabagambe, E. K., & Campos, H. (2006). Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA: The Journal of the American Medical Association, 295(10), 1135–1141.
Link: http://www.ncbi.nlm.nih.gov/pubmed/16522833
Palatini, P., Ceolotto, G., Ragazzo, F., Dorigatti, F., Saladini, F., Papparella, I., Mos, L., et al. (2009). CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. Journal of Hypertension, 27(8), 1594–1601.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19451835
Rétey, J. V., Adam, M., Khatami, R., Luhmann, U. F. O., Jung, H. H., Berger, W., & Landolt, H.-P. (2007). A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clinical Pharmacology & Therapeutics, 81(5), 692–698.
Link: http://www.ncbi.nlm.nih.gov/pubmed/17329997
Childs, E., Hohoff, C., Deckert, J., Xu, K., Badner, J., & de Wit, H. (2008). Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology, 33(12), 2791–2800.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18305461

Carbohydrate gene variants
Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., Timpson, N. J., et al. (2007).Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.Science (New York, NY), 316(5829), 1336–1341.
Link: http://www.ncbi.nlm.nih.gov/pubmed/17463249
Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jackson, A. U., Wheeler, E., et al. (2010). New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics, 42(2), 105–116.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018764/pdf/nihms259059.pdf
Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., Erdos, M. R., et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science (New York, NY), 316(5829), 1341–1345.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214617/pdf/nihms322992.pdf
MAGIC investigators, Florez, J. C., (null), Hu, F. B., et al. (2011). Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: Ten-year follow-up of the GLACIER study. Diabetes, 60(1), 345–354.
PDF Read PDF: http://diabetes.diabetesjournals.org/content/60/1/345.full.pdf
Hivert, M. F., Jablonski, K. A., Perreault, L., Saxena, R., McAteer, J. B., Franks, P. W., Hamman, R. F., et al. (2011).Updated Genetic Score Based on 34 Confirmed Type 2 Diabetes Loci Is Associated With Diabetes Incidence and Regression to Normoglycemia in the Diabetes Prevention Program. Diabetes, 60(4), 1340–1348.
PDF Read PDF: http://diabetes.diabetesjournals.org/content/60/4/1340.full.pdf
Cornelis, M. C., Qi, L., Kraft, P., & Hu, F. B. (2009). TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. The American journal of clinical nutrition, 89(4), 1256–1262.
PDF Read PDF: http://ajcn.nutrition.org/content/89/4/1256.full.pdf
Lyssenko, V., Lupi, R., Marchetti, P., Del Guerra, S., Orho-Melander, M., Almgren, P., Sjögren, M., et al. (2007).Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. The Journal of clinical investigation, 117(8), 2155–2163.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934596/pdf/JCI0730706.pdf
Marti, A., Martinez-González, M. A., & Martinez, J. A. (2008, February 1). Interaction between genes and lifestyle factors on obesity. The Proceedings of the Nutrition Society.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18234126
Speakman, J. R., Rance, K. A., & Johnstone, A. M. (2008). Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring, Md), 16(8), 1961–1965.
PDF Read PDF: http://www.nature.com/oby/journal/v16/n8/pdf/oby2008318a.pdf
Haupt, A., Thamer, C., Staiger, H., Tschritter, O., Kirchhoff, K., Machicao, F., Häring, H.-U., et al. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diabetes, 117(4), 194–197.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19053021
Sonestedt, E., Roos, C., Gullberg, B., Ericson, U., Wirfält, E., & Orho-Melander, M. (2009). Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. The American journal of clinical nutrition, 90(5), –1425.
PDF Read PDF: http://www.ajcn.org/content/90/5/1418.full.pdf
Kilpeläinen, T. O., Qi, L., Brage, S., Sharp, S. J., Sonestedt, E., Demerath, E., Ahmad, T., et al. (2011). Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS medicine, 8(11), e1001116.
PDF Read PDF: http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001116

Lipid gene variants

Willer, C. J., Sanna, S., Jackson, A. U., Scuteri, A., Bonnycastle, L. L., Clarke, R., Heath, S. C., et al. (2008). Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nature Genetics, 40(2), 161–169.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18193043
Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki, M., Pirruccello, J. P., et al. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 466(7307), 707–713.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039276/pdf/nihms213289.pdf
Kathiresan, S., Melander, O., Anevski, D., Guiducci, C., Burtt, N. P., Hirschhorn, J. N., Berglund, G., et al. (2008).Polymorphisms associated with cholesterol and risk of cardiovascular events. The New England journal of medicine, 358(12), 1240–1249.
PDF Read PDF: http://www.nejm.org/doi/pdf/10.1056/NEJMoa0706728
Dumitrescu, L., Carty, C. L., Taylor, K., Schumacher, F. R., Hindorff, L. A., Ambite, J. L., Anderson, G., et al. (2011).Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study. PLoS genetics, 7(6), e1002138.
PDF Read PDF: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002138
Chang, M.-H., Ned, R. M., Hong, Y., Yesupriya, A., Yang, Q., Liu, T., Janssens, A. C. J. W., et al. (2011). Race/Ethnic Variation in the Association of Lipid-Related Genetic Variants with Blood Lipids in the Adult U.S. Population. Circulation. Cardiovascular genetics.
PDF Read PDF: http://circgenetics.ahajournals.org/content/4/5/523.full.pdf
Ma, L., Yang, J., Runesha, H. B., Tanaka, T., Ferrucci, L., Bandinelli, S., & Da, Y. (2010). Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMC medical genetics, 11(1), 55.
PDF Read PDF: http://www.biomedcentral.com/content/pdf/1471-2350-11-55.pdf
Lanktree, M. B., Anand, S. S., Yusuf, S., Hegele, R. A., & SHARE Investigators. (2009). Replication of genetic associations with plasma lipoprotein traits in a multiethnic sample. Journal of lipid research, 50(7), 1487–1496.
PDF Read PDF: http://www.jlr.org/content/50/7/1487.full.pdf
Sánchez-Moreno, C., Ordovás, J. M., Smith, C. E., Baraza, J. C., Lee, Y.-C., & Garaulet, M. (2011). APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. Journal of Nutrition, 141(3), 380–385.
PDF Read PDF: http://jn.nutrition.org/content/141/3/380.full.pdf
Zhang, X., Qi, Q., Bray, G. A., Hu, F. B., Sacks, F. M., & Qi, L. (2012). APOA5 genotype modulates 2-y changes in lipid profile in response to weight-loss diet intervention: the Pounds Lost Trial. The American journal of clinical nutrition, 96(4), 917–922.
Link: http://www.ncbi.nlm.nih.gov/pubmed/22914552
Kim, J. Y., Kim, O. Y., Koh, S. J., Jang, Y., Yun, S.-S., Ordovas, J. M., & Lee, J. H. (2006). Comparison of low-fat meal and high-fat meal on postprandial lipemic response in non-obese men according to the -1131T>C polymorphism of the apolipoprotein A5 (APOA5) gene (randomized cross-over design). Journal of the American College of Nutrition, 25(4), 340–347.
PDF Read PDF: http://www.jacn.org/content/25/4/340.full.pdf
Mattei, J., Demissie, S., Tucker, K. L., & Ordovás, J. M. (2009). Apolipoprotein A5 polymorphisms interact with total dietary fat intake in association with markers of metabolic syndrome in Puerto Rican older adults. Journal of Nutrition, 139(12), 2301–2308.
PDF Read PDF: http://jn.nutrition.org/content/139/12/2301.full.pdf
Lai, C.-Q., Corella, D., Demissie, S., Cupples, L. A., Adiconis, X., Zhu, Y., Parnell, L. D., et al. (2006). Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation, 113(17), 2062–2070.
PDF Read PDF: http://circ.ahajournals.org/content/113/17/2062.full.pdf
Rantala, M., Rantala, T. T., Savolainen, M. J., Friedlander, Y., & Kesäniemi, Y. A. (2000). Apolipoprotein B gene polymorphisms and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. The American journal of clinical nutrition, 71(3), 713–724.
PDF Read PDF: http://www.ajcn.org/content/71/3/713.full.pdf
Thompson, A., Di Angelantonio, E., Sarwar, N., Erqou, S., Saleheen, D., Dullaart, R. P. F., Keavney, B., et al. (2008).Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA: The Journal of the American Medical Association, 299(23), 2777–2788.
PDF Read PDF: http://jama.jamanetwork.com/article.aspx?articleid=1028640
Corella, D., Carrasco, P., Fito, M., Martinez-González, M. A., Salas-Salvado, J., Arós, F., Lapetra, J., et al. (2010).Gene-environment interactions of CETP gene variation in a high cardiovascular risk Mediterranean population. Journal of lipid research, 51(9), 2798–2807.
PDF Read PDF: http://www.jlr.org/content/51/9/2798.full.pdf
Nettleton, J. A., Steffen, L. M., Ballantyne, C. M., Boerwinkle, E., & Folsom, A. R. (2007). Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults. Atherosclerosis, 194(2), e131–40.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248232/pdf/nihms32972.pdf


Monsuur, A. J., de Bakker, P. I. W., Zhernakova, A., Pinto, D., Verduijn, W., Romanos, J., Auricchio, R., Lopez, A., van Heel, D. A., Crusius, J. B. A., & Wijmenga, C. (2008). Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS ONE, 3(5), e2270.
PDF Read PDF: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0002270
Koskinen, L., Romanos, J., Kaukinen, K., Mustalahti, K., Korponay-Szabo, I., Barisani, D., Bardella, M. T., et al. (2009). Cost-effective HLA typing with tagging SNPs predicts celiac disease risk haplotypes in the Finnish, Hungarian, and Italian populations. Immunogenetics, 61(4), 247–256.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19255754
Pietzak, M. M., Schofield, T. C., McGinniss, M. J., & Nakamura, R. M. (2009). Stratifying risk for celiac disease in a large at-risk United States population by using HLA alleles. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association, 7(9), 966–971. 028
Link: http://www.ncbi.nlm.nih.gov/pubmed/19500688
Anderson, R. P. (2005). Coeliac disease. Australian family physician, 34(4), 239–242.
Link: http://www.ncbi.nlm.nih.gov/pubmed/15861743
Anderson, R. P. (2011). Coeliac disease is on the rise. The Medical Journal of Australia, 194(6), 278–279.
Link: https://www.mja.com.au/journal/2011/194/6/coeliac-disease-rise
Tye-Din, J. (2012). Why did I get coeliac disease? The Australian Coeliac, (March 2012), 23–27.

MTHFR C677T and A1298C

Frosst, P., Blom, H. J., Milos, R., Goyette, P., Sheppard, C. A., Matthews, R. G., Boers, G. J., et al. (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genetics, 10(1), 111–113.
Link: http://www.ncbi.nlm.nih.gov/pubmed/7647779
Hustad, S., Midttun, Ø., Schneede, J., Vollset, S. E., Grotmol, T., & Ueland, P. M. (2007). The methylenetetrahydrofolate reductase 677C–>T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. American journal of human genetics, 80(5), 846–855.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852731/pdf/AJHGv80p846.pdf
Weisberg, I., Tran, P., Christensen, B., Sibani, S., & Rozen, R. (1998). A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Molecular genetics and metabolism, 64(3), 169–172.
Link: http://www.ncbi.nlm.nih.gov/pubmed/9719624
Ozarda, Y., Sucu, D. K., Hizli, B., & Aslan, D. (2009). Rate of T alleles and TT genotype at MTHFR 677C->T locus or C alleles and CC genotype at MTHFR 1298A->C locus among healthy subjects in Turkey: impact on homocysteine and folic acid status and reference intervals. Cell biochemistry and function, 27(8), 568–577.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19764044
van der Put, N. M., Gabreëls, F., Stevens, E. M., Smeitink, J. A., Trijbels, F. J., Eskes, T. K., van den Heuvel, L. P., et al. (1998). A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? American journal of human genetics, 62(5), 1044–1051.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1377082/pdf/9545395.pdf
Hustad, S., Ueland, P. M., Vollset, S. E., Zhang, Y., Bjørke-Monsen, A. L., & Schneede, J. (2000). Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clinical Chemistry, 46 (8 Pt 1), 1065–1071.
PDF Read PDF: http://www.clinchem.org/content/46/8/1065.full.pdf
Nishio, K., Goto, Y., Kondo, T., Ito, S., Ishida, Y., Kawai, S., Naito, M., et al. (2008). Serum folate and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism adjusted for folate intake. Journal of epidemiology / Japan Epidemiological Association, 18(3), 125–131.
PDF Read PDF: https://www.jstage.jst.go.jp/article/jea/18/3/18_JE2007417/_pdf
Guttormsen, A. B., Ueland, P. M., Nesthus, I., Nygård, O., Schneede, J., Vollset, S. E., & Refsum, H. (1996).Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine Study. The Journal of clinical investigation, 98(9), 2174–2183.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC507663/pdf/982174.pdf
Miyaki, K., Murata, M., Kikuchi, H., Takei, I., Nakayama, T., Watanabe, K., & Omae, K. (2005). Assessment of tailor-made prevention of atherosclerosis with folic acid supplementation: randomized, double-blind, placebo-controlled trials in each MTHFR C677T genotype. Journal of Human Genetics, 50(5), 241–248.
Link: http://www.ncbi.nlm.nih.gov/pubmed/15895286
Ashfield-Watt, P. A. L., Pullin, C. H., Whiting, J. M., Clark, Z. E., Moat, S. J., Newcombe, R. G., Burr, M. L., et al. (2002). Methylenetetrahydrofolate reductase 677C–>T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. The American journal of clinical nutrition, 76(1), 180–186.
PDF Read PDF: http://ajcn.nutrition.org/content/76/1/180.full.pdf
Fohr, I. P., Prinz-Langenohl, R., Brönstrup, A., Bohlmann, A. M., Nau, H., Berthold, H. K., & Pietrzik, K. (2002). 5,10-Methylenetetrahydrofolate reductase genotype determines the plasma homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in healthy young women. The American journal of clinical nutrition, 75(2), 275–282.
PDF Read PDF: http://ajcn.nutrition.org/content/75/2/275.full.pdf

For references associated with MTHFR C677T and A1298C genetic variants please refer to above references.

MTRR A66G

Van Der Linden, I. J. M., Heijer, den, M., Afman, L. A., Gellekink, H., Vermeulen, S. H. H. M., Kluijtmans, L. A. J., & Blom, H. J. (2006). The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina bifida. Journal of molecular medicine (Berlin, Germany), 84(12), 1047–1054.
Link: http://www.ncbi.nlm.nih.gov/pubmed/17024475
Wilson, A., Platt, R., Wu, Q., Leclerc, D., Christensen, B., Yang, H., Gravel, R. A., et al. (1999). A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Molecular genetics and metabolism, 67(4), 317–323.
Link: http://www.ncbi.nlm.nih.gov/pubmed/10444342
Gaughan, D. J., Kluijtmans, L. A., Barbaux, S., McMaster, D., Young, I. S., Yarnell, J. W., Evans, A., et al. (2001). The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis, 157(2), 451–456.
Link: http://www.ncbi.nlm.nih.gov/pubmed/11472746
Barbosa, P. R., Stabler, S. P., Machado, A. L. K., Braga, R. C., Hirata, R. D. C., Hirata, M. H., Sampaio-Neto, L. F., et al. (2008). Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women.European Journal of Clinical Nutrition, 62(8), 1010–1021.
Link: http://www.ncbi.nlm.nih.gov/pubmed/17522601

MTR A2756G

Barbosa, P. R., Stabler, S. P., Machado, A. L. K., Braga, R. C., Hirata, R. D. C., Hirata, M. H., Sampaio-Neto, L. F., et al. (2008). Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women.European Journal of Clinical Nutrition, 62(8), 1010–1021.
Link: http://www.ncbi.nlm.nih.gov/pubmed/17522601
Tsai, M. Y., Bignell, M., Yang, F., Welge, B. G., Graham, K. J., & Hanson, N. Q. (2000). Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels.Atherosclerosis, 149(1), 131–137.
Link: http://www.ncbi.nlm.nih.gov/pubmed/10704624

TCN2 C776G

Stanisławska-Sachadyn, A., Woodside, J. V., Sayers, C. M., Yarnell, J. W., Young, I. S., Evans, A. E., Mitchell, L. E., et al. (2010). The transcobalamin (TCN2) 776C>G polymorphism affects homocysteine concentrations among subjects with low vitamin B(12) status. European Journal of Clinical Nutrition, 64(11), 1338–1343.
Link: http://www.ncbi.nlm.nih.gov/pubmed/20808328
Castel-Dunwoody, von, K. M., Kauwell, G. P. A., Shelnutt, K. P., Vaughn, J. D., Griffin, E. R., Maneval, D. R., Theriaque, D. W., et al. (2005). Transcobalamin 776C->G polymorphism negatively affects vitamin B-12 metabolism. The American journal of clinical nutrition, 81(6), 1436–1441.
PDF Read PDF: http://ajcn.nutrition.org/content/81/6/1436.full.pdf

SLC19A1 (RFC1)

Wernimont, S. M., Clark, A. G., Stover, P. J., Wells, M. T., Litonjua, A. A., Weiss, S. T., Gaziano, J. M., et al. (2011).Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study. BMC medical genetics, 12, 150.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266217/pdf/1471-2350-12-150.pdf
Stanisławska-Sachadyn, A., Mitchell, L. E., Woodside, J. V., Buckley, P. T., Kealey, C., Young, I. S., Scott, J. M., et al. (2009). The reduced folate carrier (SLC19A1) c.80G>A polymorphism is associated with red cell folate concentrations among women. Annals of human genetics, 73(Pt 5), 484–491.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812009/pdf/nihms125620.pdf
Chatzikyriakidou, A., Vakalis, K. V., Kolaitis, N., Kolios, G., Naka, K. K., Michalis, L. K., & Georgiou, I. (2008).Distinct association of SLC19A1 polymorphism -43T>C with red cell folate levels and of MTHFR polymorphism 677C>T with plasma folate levels. Clinical biochemistry, 41(3), 174–176.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18053808
Fredriksen, A., Meyer, K., Ueland, P. M., Vollset, S. E., Grotmol, T., & Schneede, J. (2007). Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Human mutation, 28(9), 856–865.
Link: http://www.ncbi.nlm.nih.gov/pubmed/17436311


Barlow-Stewart, K., Emery, J., & Metcalfe, S. (2007). Hereditary Haemochromatosis. In Genetics in Family Medicine: the Australian Handbook for General Practitioners, Chapter 13. NHMRC.
PDF Read PDF:http://www.nhmrc.gov.au/_files_nhmrc/file/your_health/egenetics/practioners/gems/sections/13_hereditary_haemochromatosis.pdf
Barlow-Stewart, K., Emery, J., & Metcalfe, S. (2007). Hereditary Haemochromatosis. In Genetics in Family Medicine: the Australian Handbook for General Practitioners Patient and family fact sheet. NHMRC.
PDF Read PDF:http://www.nhmrc.gov.au/_files_nhmrc/file/your_health/egenetics/practioners/gems/fact_sheets/13_hereditary_haemochromatosis.pdf
Bacon, B. R., Adams, P. C., Kowdley, K. V., Powell, L. W., Tavill, A. S., American Association for the Study of Liver Diseases. (2011). Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology (Baltimore, Md.).
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149125/pdf/hep0054-0328.pdf
Adams, P. C., Reboussin, D. M., Barton, J. C., McLaren, C. E., Eckfeldt, J. H., McLaren, G. D., et al. (2005).Hemochromatosis and iron-overload screening in a racially diverse population. The New England Journal of Medicine, 352(17), 1769–1778.
PDF Read PDF: http://www.nejm.org/doi/pdf/10.1056/NEJMoa041534
Allen, K. J., Gurrin, L. C., Constantine, C. C., Osborne, N. J., Delatycki, M. B., Nicoll, A. J., et al. (2008). Iron-overload-related disease in HFE hereditary hemochromatosis. The New England Journal of Medicine, 358(3), 221–230.
PDF Read PDF: http://www.nejm.org/doi/pdf/10.1056/NEJMoa073286

Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J. S., Humphries, S., & Woo, P. (1998). The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. The Journal of clinical investigation, 102(7), 1369–1376.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC508984/pdf/1021369.pdf
Zakharyan, R., Petrek, M., Arakelyan, A., Mrazek, F., Atshemyan, S., & Boyajyan, A. (2012). Interleukin-6 promoter polymorphism and plasma levels in patients with schizophrenia. Tissue antigens, 80(2), 136–142.
Link: http://www.ncbi.nlm.nih.gov/pubmed/22571276
Pascual, M., Nieto, A., Matarán, L., Balsa, A., Pascual-Salcedo, D., & Martin, J. (2000). IL-6 promoter polymorphisms in rheumatoid arthritis. Genes and immunity, 1(5), 338–340.
PDF Read PDF: http://www.nature.com/gene/journal/v1/n5/pdf/6363677a.pdf
Urpi-Sarda, M., Casas, R., Chiva-Blanch, G., Romero-Mamani, E. S., Valderas-Martínez, P., Arranz, S., Andres-Lacueva, C., et al. (2012). Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to atherosclerosis. Pharmacological research : the official journal of the Italian Pharmacological Society, 65(6), 577–583.
Link: http://www.ncbi.nlm.nih.gov/pubmed/22449789
Mena, M.-P., Sacanella, E., Vazquez-Agell, M., Morales, M., Fito, M., Escoda, R., Serrano-Martínez, M., et al. (2009). Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. The American journal of clinical nutrition, 89(1), 248–256.
PDF Read PDF: http://ajcn.nutrition.org/content/89/1/248.full.pdf

TNF-α

Elahi, M. M., Asotra, K., Matata, B. M., & Mastana, S. S. (2009). Tumor necrosis factor alpha −308 gene locus promoter polymorphism: An analysis of association with health and disease. BBA – Molecular Basis of Disease, 1792(3), 163–172.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19708125
Louis, E., Franchimont, D., Piron, A., Gevaert, Y., Schaaf-Lafontaine, N., Roland, S., Mahieu, P., et al. (1998).Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clinical and experimental immunology, 113(3), 401–406.
PDF Read PDF: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905064/pdf/cei0113-0401.pdf


Enattah, N. S., Terwilliger, J. D., Peltonen, L., & Järvelä, I. (2002). Identification of a variant associated with adult-type hypolactasia. Nature Genetics, 30(2), 233–237.
Link: http://www.ncbi.nlm.nih.gov/pubmed/11788828
Krawczyk, M., Wolska, M., Schwartz, S., Gruenhage, F., Terjung, B., Portincasa, P., Sauerbruch, T., et al. (2008).Concordance of genetic and breath tests for lactose intolerance in a tertiary referral centre. Journal of gastrointestinal and liver diseases : JGLD, 17(2), 135–139.
PDF Read PDF: http://www.jgld.ro/2008/2/1.html
Nicklas, T. A., Qu, H., Hughes, S. O., He, M., Wagner, S. E., Foushee, H. R., & Shewchuk, R. M. (2011). Self-perceived lactose intolerance results in lower intakes of calcium and dairy foods and is associated with hypertension and diabetes in adults. The American journal of clinical nutrition, 94(1), 191–198.
PDF Read PDF: http://ajcn.nutrition.org/content/94/1/191.full.pdf
Obermayer-Pietsch, B. M., Bonelli, C. M., Walter, D. E., Kuhn, R. J., Fahrleitner-Pammer, A., Berghold, A., Goessler, W., et al. (2004). Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 19(1), 42–47.
Link: http://www.ncbi.nlm.nih.gov/pubmed/14753735
Tolonen, S., Laaksonen, M., Mikkilä, V., Sievänen, H., Mononen, N., Räsänen, L., Viikari, J., et al. (2011). Lactase gene c/t(-13910) polymorphism, calcium intake, and pQCT bone traits in Finnish adults. Calcified tissue international, 88(2), 153–161.
Link: http://www.ncbi.nlm.nih.gov/pubmed/21136048

Yamagishi, K., Tanigawa, T., Cui, R., Tabata, M., Ikeda, A., Yao, M., et al. (2007). High sodium intake strengthens the association of ACE I/D polymorphism with blood pressure in a community. Nature, 20(7), 751–757.
Link: http://www.nature.com/ajh/journal/v20/n7/full/ajh2007228a.html
Zhang, L., Miyaki, K., Araki, J., Song, Y., Kimura, T., Omae, K., & Muramatsu, M. (2006). Interaction of angiotensin I-converting enzyme insertion-deletion polymorphism and daily salt intake influences hypertension in Japanese men. Hypertension Research, 29(10), 751–758.
PDF Read PDF: http://www.nature.com/hr/journal/v29/n10/pdf/hr2006104a.pdf
Poch, E., González, D., Giner, V., Bragulat, E., Coca, A., & La Sierra, De, A. (2001). Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension, 38(5), 1204–1209.
PDF Read PDF:http://hyper.ahajournals.org/content/38/5/1204.full.pdf
Giner, V., Poch, E., Bragulat, E., Oriola, J., González, D., Coca, A., & La Sierra, De, A. (2000). Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension, 35(1 Pt 2), 512–517.
PDF Read PDF: http://hyper.ahajournals.org/content/35/1/512.full.pdf
Hiraga, H., Oshima, T., Watanabe, M., Ishida, M., Ishida, T., Shingu, T., et al. (1996). Angiotensin I-converting enzyme gene polymorphism and salt sensitivity in essential hypertension. Hypertension, 27(3 Pt 2), 569–572.
Read article: http://hyper.ahajournals.org/content/27/3/569.long
Norat, T., Bowman, R., Luben, R., Welch, A., Khaw, K.-T., Wareham, N., & Bingham, S. (2008). Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. The American Journal of Clinical Nutrition, 88(2), 392–397.
PDF Read PDF: http://ajcn.nutrition.org/content/88/2/392.full.pdf
Yamagishi, K., Iso, H., Tanigawa, T., Cui, R., Kudo, M., & Shimamoto, T. (2004). High sodium intake strengthens the association between angiotensinogen T174M polymorphism and blood pressure levels among lean men and women: a community-based study. Hypertension Research, 27(1), 53–60.
PDF Read PDF: https://www.jstage.jst.go.jp/article/hypres/27/1/27_1_53/_pdf
Hunt, S. C., Cook, N. R., Oberman, A., Cutler, J. A., Hennekens, C. H., Allender, P. S., et al. (1998).Angiotensinogen genotype, sodium reduction, weight loss, and prevention of hypertension: trials of hypertension prevention, phase II. Hypertension, 32(3), 393–401.
PDF Read PDF: http://hyper.ahajournals.org/content/32/3/393.full.pdf

Ahmetov, I., & Rogozkin, V. (2009). Genes, Athlete Status and Training – An Overview. Medicine and sport science, 54, 43–71.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19696507
Ahmetov, I., Williams, A., Popov, D., Lyubaeva, E., Hakimullina, A., Fedotovskaya, O., Mozhayskaya, I., et al. (2009). The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Human genetics, 126(6), –761.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19653005
Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., Pérusse, L., et al. (1999). Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. Journal of applied physiology (Bethesda, Md : 1985), 87(3), 1003–1008.
PDF Read PDF: http://jap.physiology.org/content/87/3/1003.full.pdf
Bray, M. S., Hagberg, J. M., Pérusse, L., Rankinen, T., Roth, S. M., Wolfarth, B., & Bouchard, C. (2009). The Human Gene Map for Performance and Health-Related Fitness Phenotypes. Medicine & Science in Sports & Exercise, 41(1), 35–73.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19123262
Collins, M., Posthumus, M., & Schwellnus, M. (2009). The COL1A1 gene and acute soft tissue ruptures. British Journal of Sports Medicine, 44(14), –1064.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19193665
Collins, M., & Posthumus, M. (2011). Type V collagen genotype and exercise-related phenotype relationships: a novel hypothesis. Exercise and sport sciences reviews, 39(4), 191–198.
Link: http://www.ncbi.nlm.nih.gov/pubmed/21697718
Devaney, J. M., Hoffman, E. P., Gordish-Dressman, H., Kearns, A., Zambraski, E., & Clarkson, P. M. (2007). IGF-II gene region polymorphisms related to exertional muscle damage. Journal of applied physiology (Bethesda, Md : 1985), 102(5), 1815–1823.

PDF Read PDF: http://jap.physiology.org/content/102/5/1815.full.pdf
Eynon, N., Duarte, J. A., Oliveira, J., Sagiv, M., Yamin, C., Meckel, Y., Sagiv, M., et al. (2009). ACTN3 R577X polymorphism and Israeli top-level athletes. International Journal of Sports Medicine, 30(9), 695–698.
Link: http://www.ncbi.nlm.nih.gov/pubmed/19544227
Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gomez-Gallego, F., Santiago, C., Yvert, T., et al. (2009). Can we identify a power-oriented polygenic profile? Journal of applied physiology (Bethesda, Md : 1985), 108(3), –566.
PDF Read PDF: http://jap.physiology.org/content/108/3/561.full.pdf
Ruiz, J. R., Gómez-Gallego, F., Santiago, C., González-Freire, M., Verde, Z., Foster, C., & Lucia, A. (2009). Is there an optimum endurance polygenic profile? The Journal of Physiology, 587(Pt 7), 1527–1534.
PDF Read PDF: http://jp.physoc.org/content/587/7/1527.full.pdf
September, A. V., Cook, J., Handley, C. J., van der Merwe, L., Schwellnus, M. P., & Collins, M. (2009). Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. British Journal of Sports Medicine, 43(5), 357–365.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18443036
Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leemputte, M., Hespel, P., & Thomis, M. A. (2007).ACTN3 (R577X) genotype is associated with fiber type distribution. Physiological Genomics, 32(1), 58–63.
PDF Read PDF: http://physiolgenomics.physiology.org/content/32/1/58.full.pdf
Yamin, C., Duarte, J. A. R., Oliveira, J. M. F., Amir, O., Sagiv, M., Eynon, N., Sagiv, M., et al. (2008). IL6 (-174) and TNFA (-308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. European journal of applied physiology, 104(3), 579–586.
Link: http://www.ncbi.nlm.nih.gov/pubmed/18758806
Zhang, B., Tanaka, H., Shono, N., Miura, S., Kiyonaga, A., Shindo, M., & Saku, K. (2003). The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clinical genetics, 63(2), 139–144.
Link: http://www.ncbi.nlm.nih.gov/pubmed/12630962


Wang, T. J., Zhang, F., Richards, J. B., Kestenbaum, B., van Meurs, J. B., Berry, D., Kiel, D. P., et al. (2010).Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet, 376(9736), 180–188.
Link: http://www.ncbi.nlm.nih.gov/pubmed/20541252
Daly, R. M., Gagnon, C., Lu, Z. X., Magliano, D. J., Dunstan, D. W., Sikaris, K. A., Zimmet, P. Z., et al. (2012).Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clinical endocrinology, 77(1), 26–35.
Link: http://www.ncbi.nlm.nih.gov/pubmed/22168576
Berry, D., & Hyppönen, E. (2011). Determinants of vitamin D status: focus on genetic variations. Current Opinion in Nephrology and Hypertension, 20(4), 331–336.
Link: http://www.ncbi.nlm.nih.gov/pubmed/21654390
Ahn, J., Yu, K., Stolzenberg-Solomon, R., Simon, K. C., McCullough, M. L., Gallicchio, L., Jacobs, E. J., et al. (2010).Genome-wide association study of circulating vitamin D levels. Human molecular genetics, 19(13), 2739–2745.
Link: http://www.ncbi.nlm.nih.gov/pubmed/20418485
Bu, F.-X., Armas, L., Lappe, J., Zhou, Y., Gao, G., Wang, H.-W., Recker, R., et al. (2010). Comprehensive association analysis of nine candidate genes with serum 25-hydroxy vitamin D levels among healthy Caucasian subjects. Human genetics, 128(5), 549–556.
Link: http://www.ncbi.nlm.nih.gov/pubmed/20809279
Loading..